The Loss of TGF-h Signaling Promotes Prostate Cancer Metastasis

نویسندگان

  • William H. Tu
  • Tania Z. Thomas
  • Naoya Masumori
  • Neil A. Bhowmick
  • Agnieszka E. Gorska
  • Yu Shyr
  • Susan Kasper
  • Tom Case
  • Richard L. Roberts
  • Scott B. Shappell
  • Harold L. Moses
  • Robert J. Matusik
چکیده

In breast and colon cancers, transforming growth factor (TGF)-B signaling initially has an antineoplastic effect, inhibiting tumor growth, but eventually exerts a proneoplastic effect, increasing motility and cancer spread. In prostate cancer, studies using human samples have correlated the loss of the TGF-B type II receptor (TBRII) with higher tumor grade. To determine the effect of an inhibited TGF-B pathway on prostate cancer, we bred transgenic mice expressing the tumorigenic SV40 large T antigen in the prostate with transgenic mice expressing a dominant negative TBRII mutant (DNIIR) in the prostate. Transgene(s) and TGF-B1 expression were identified in the prostate and decreased protein levels of plasminogen activator inhibitor type I, as a marker for TGF-B signaling, correlated with expression of the DNIIR. Although the sizes of the neoplastic prostates were not enlarged, increased amounts of metastasis were observed in mice expressing both transgenes compared to age-matched control mice expressing only the large T antigen transgene. Our study demonstrates for the first time that a disruption of TGF-B signaling in prostate cancer plays a causal role in promoting tumor metastasis. Neoplasia (2003) 5, 267 – 277

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Downregulation of miR-19a-3p promotes invasion, migration and bone metastasis via activating TGF-β signaling in prostate cancer

Constitutive activation of TGF‑β signaling pathway is a well-documented mechanism responsible for the bone metastasis of prostate cancer (PCa). MicroRNAs (miRNAs) have been reported to be crucial for the activation of TGF‑β signaling via targeting downstream components of TGF‑β signaling pathway. Here, we report that miR‑19a‑3p is downregulated in bone metastatic PCa tissues and cells. Upregula...

متن کامل

TGF-β induced TMEPAI/PMEPA1 inhibits canonical Smad signaling through R-Smad sequestration and promotes non-canonical PI3K/Akt signaling by reducing PTEN in triple negative breast cancer

TMEPAI (transmembrane prostate androgen-induced) is amplified at genomic, transcript and protein levels in triple-negative breast cancers and promotes TGF-β dependent growth, motility and invasion. Tumor promotion by TMEPAI depends on two different but related actions on TGF-β signaling. Firstly, TMEPAI binds and sequesters regulatory Smads2/3 and thereby decreases growth suppressive signaling ...

متن کامل

Sustained activation of SMAD3/SMAD4 by FOXM1 promotes TGF-β-dependent cancer metastasis.

A key feature of TGF-β signaling activation in cancer cells is the sustained activation of SMAD complexes in the nucleus; however, the drivers of SMAD activation are poorly defined. Here, using human and mouse breast cancer cell lines, we found that oncogene forkhead box M1 (FOXM1) interacts with SMAD3 to sustain activation of the SMAD3/SMAD4 complex in the nucleus. FOXM1 prevented the E3 ubiqu...

متن کامل

Akt/PKB-mediated phosphorylation of Twist1 promotes tumor metastasis via mediating cross-talk between PI3K/Akt and TGF-β signaling axes.

UNLABELLED Metastatic breast tumor cells display an epithelial-mesenchymal transition (EMT) that increases cell motility, invasion, and dissemination. Although the transcription factor Twist1 has been shown to contribute to EMT and cancer metastasis, the signaling pathways regulating Twist1 activity are poorly understood. Here, we show that Twist1 is ubiquitously phosphorylated in 90% of 1,532 ...

متن کامل

Roles of Renin-Angiotensin System in the Regulation of Prostate Cancer Bone Metastasis: A Critical Review

Mestastatic prostate cancer cells (MPCCs) frequently metastasize to bone, which is a “favorite soil” for colonization and proliferation of MPCCs. Prostate cancer bone mestastasis is tightly associated with tumor-induced bone lesions, most commonly caused from the etiological imbalance between osteoblastic bone formation and osteoclastic bone resorption, and from the anti-tumor immune response. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003